CFD modelling of a fan with a cycloidal rotor

Author:

Staśko T,Majkut M,Dykas S,Smołka K

Abstract

Abstract Despite the wide possibilities of using a cycloidal rotor in the form of propulsion systems for unmanned aerial vehicles (UAV), cycloidal propellers for sea-going ships, rotors of wind turbines or sea or river cycloidal energy converters, there is practically no research on the use of this solution in the form of a cycloidal rotor fan (CRF) for HVAC (heat, ventilation & air conditioning) applications. The main features of such a machine, compared to conventional solutions, is a possibility of changing the flow direction only by changing pitch angles of the rotor blades. This study analysed two variants of the fan, first equipped with an asymmetrical CLARK Y profile, and other with a symmetrical NACA0012. Numerical simulation of cycloidal rotor fan developed in Ansys CFX was presented, that enables the simulation of fan operation. The results obtained from CFD for both variants were compared with those obtained during experimental measurements made with the use of Laser Doppler Anemometry (LDA). The comparison showed good agreement between the numerical analysis and the performed experiment. Despite the operation based on the same cycloidal regulation settings and rotation speed, the fan equipped with symmetrical blades slightly more curved the flow angle than the asymmetrical one.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Experiments on the optimization of the MAV-scale cycloidal rotor characteristics towards improving their aerodynamic performance;Benedict,2009

2. Experimental Performance and steering characteristics of cycloidal propellers. Washington;Ficken;Nava Ship Research and Development Center, Hydromechanics Laboratory Research and Development, Report,1969

3. Wave radiation of a cycloidal wave energy converter;S;Applied Ocean Research,2014

4. Geometrical Parameters Influencing the Aerodynamic Efficiency of a Small-Scale Self-Pitch High Solidity VAWT;Xisto;Journal of Solar Energy Engineering,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3