Author:
Feng Duo,Paolucci Roberto,Mazzieri Ilario
Abstract
Abstract
Controlling the vibrations induced by high-speed trains on environmental infrastructures, especially buildings situated along railway tracks, is an essential demand and a challenging task. In order to accurately predict the dynamic response of the ground and adjacent buildings to railway-induced vibrations, we conduct numerical validation based on an existing in-situ model test in Portugal. This validation is done using the spectral element numerical code SPEED, developed at Politecnico di Milano, which considers a fully coupled 3D model of both the ground and building. The mechanical parameters of the track structure, modeled by the beam on elastic foundation, are obtained by iteratively calibrating the analytical dynamic receptance curve according to the experimental data. We use a multi-objective optimization-based method to estimate the equivalent rectangular sections of building structural components. The recorded dynamic vertical responses of the nearby ground and building slab under the excitation of 219 km/h moving trains are compared with the numerical results. Specific attention is paid to the frequency range that dominates the dynamic response of the building to discuss the accuracy of the results.