A silicon resonant pressure sensor based on thermal stresses matched structures

Author:

Yu Hengshu,Wang Junbo,Lu Yulan,Xie Bo,Shang Yanlong,Liu Zhao

Abstract

Abstract This paper introduced a silicon resonant pressure sensor based on thermal stress-matched structures to extend the operating temperature range. The sensor designed this time consists of an SOI wafer with a pressure-sensitive diaphragm for pressure sensing and two integrated resonators, a silicon wafer for vacuum packaging, and a glass wafer for additional stress isolation. The multilayer structures were bonded together to form a thermal stress-matched part to address the problem of temperature inflection points of conventional resonant pressure sensors within broad temperature zones. Finite element analyses optimized the sensor’s pressure- and temperature-sensitive characteristics. Micromachining based on eutectic and anodic bonding to fabricate sensor chips. Characterization results indicated the developed pressure sensor can work stably in a wide temperature range of -55∼125°C and has excellent fitting accuracy exceeding ±0.01% FS., which showed a better performance than previously reported counterparts.

Publisher

IOP Publishing

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3