On the use of maritime training simulators with humans in the loop for understanding and evaluating algorithms for autonomous vessels

Author:

Vagale Anete,Osen Ottar L,Brandsæter Andreas,Tannum Marius,Hovden Christian,Bye Robin T

Abstract

Abstract The prospect of a future where the maritime shipping industry is dominated by autonomous vessels is appealing and gaining global interest from industry majors, research institutions, and academia. Potential advantages include increased operational safety, reduced costs, and lower environmental footprint. However, the transition will not happen overnight and is not without challenges. For example, algorithms for autonomous navigation must take into consideration safety concerns of the own ship, its crew and passengers, other surrounding ships, and the surrounding environment. This raises a need to test and verify safety, performance, and robustness of the algorithms responsible for the autonomous functionality. In addition, the transition towards fully autonomous ships is likely to be gradual and involve remote control centres and ships with varying degrees of autonomy. Hence, humans will inevitably have to interact with autonomous vessels in a variety of scenarios, including overriding own ships from land or on board, as well as communicating with autonomous ships from other fleets. Inevitably, full scale scenario testing involving real vessels and humans is costly, impractical, time-consuming, and potentially dangerous. In this paper, we propose an alternative approach, and explore how maritime navigation training simulators with humans in the loop can be used as a testbed for understanding and evaluating algorithms for autonomous vessels. In the proposed setting, we can directly compare choices made by an algorithm with those of a skilled human navigator for a variety of navigational tasks. Moreover, we can study in real-time the behaviour and decision-making of human navigators in mixed scenarios that also include autonomous ships, whether this is known beforehand or not. Our paper provides an overview of related work, details on maritime simulators and how algorithms can be tested, and some of the technical requirements. To exemplify our approach, we present two example test setups, and provide a brief discussion of our findings. We conclude that using maritime training simulators enables the study of several interesting and vital research questions, including that of the interaction between autonomous and traditional vessels operating side by side.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference45 articles.

1. COLREGs - International Regulations for Preventing Collisions at Sea,1972

2. Path planning and collision avoidance for autonomous surface vehicles I: a review;Vagale;Journal of Marine Science and Technology (Japan),2021

3. Towards simulation-based verification of autonomous navigation systems;Pedersen,2019

4. Safety first for automated driving;Wood,2019

5. Challenges in applying the ISO 26262 for driver assistance systems;Spanfelner;Tagung Fahrerassistenz, Munchen,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3