Recent Advances in Copper Polycrystal Film’s Grain Boundaries Behavior and Its Influence in Properties with Molecular Dynamic Simulation

Author:

Lei Tong

Abstract

Abstract Abstract.Copper polycrystal film(CPF) is accepted as a promising material for electroplated film in semiconductor devices for its outstanding conductivity and ductility as well as the good resistance to elector-migration. However, the film material attains a rapid failure in the working environment, and hence the failure mechanism and the fabrication methods require more exploration. In previous studies, it is convinced that grain boundaries(GBs) movement and its interaction with twining boundaries(TBs) and dislocations have a great influence on the failure process. In this study, the applications of Molecular Dynamic(MD) Simulation in the research of CPF have been introduced. The GBs behaviour including deformation of the GBs and the interaction between GBs and TBs that is observed by dislocation extraction algorithm(DXA) has been summarized, and its relation to the properties such as yield strength and the roughness of growth has been discussed. And the best condition to construct a CPF with magnetron sputtering method is concluded to have substrates in 700K as well as low misorientation with grains under incident atoms of large enough kinetic energy and vertical incident angle.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. Effect of grain boundary deformation on mechanical properties in nanocrystalline Cu film investigated by using phase field and molecular dynamics simulation methods[J];Zhang;Journal of Applied Physics,2020

2. Grain boundaries dependence of plastic deformation in nanocrystalline Cu film investigated by phase field and molecular dynamics methods[J];Zhang;Materials Chemistry and Physics

3. Constructing initial nanocrystalline configurations from phase field microstructures enables rational molecular dynamics simulation[J];Zhang;Computational Materials Science,2019

4. Symmetric tilt grain boundary evolution during the growth of copper thin films: Molecular dynamics simulation[J];Xz;Physica B: Condensed Matter

5. Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film[J];Zhou;Computational Materials Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3