Characteristic emission from quantum dot-like intersection nodes of dislocations in GaN

Author:

Shapenkov S V,Vyvenko O F,Schmidt G,Bertram F,Metzner S,Veit P,Christen J

Abstract

Abstract Freshly introduced a-screw dislocations in gallium nitride are an effective source of ultraviolet radiation, characterized by intense emission of narrow luminescence doublet lines in the spectral range of 3.1-3.2 eV. Furthermore, an additional narrow spectral line with an energy of 3.3 eV has been found at the points of intersection of such dislocations, where extended dislocation nodes were formed. In this communication, we report on the spectral properties of the characteristic luminescence of such nodes, which were obtained for the (0001) gallium nitride samples with dislocations introduced by nanoindentation. The spectral position of the dislocation-related luminescence doublet experiences a redshift with increasing distance from the indentation site. It follows the spectral shift of the excitonic near-bandgap emission, associated with stress relaxation. The luminescence of the intersection points exhibits a similar tendency. At certain local positions, its doublet fine structure is observed, which has a spectral linewidth of the order of or even less than that of the exciton. In this case, the spectral splitting between components of the doublet varies irregularly depending on the position of the exciton (i.e., on the mechanical stress). We see a clear indication of quantum dot-like emission. The fine structure of the luminescence of the intersection points can be easily explained by the energy dependence of emission on their size, as well as on their density, in particular, by the formation of paired nodes, which were previously observed in experiments in a transmission electron microscope.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3