Modelling cluster wakes and wind farm blockage

Author:

Nygaard Nicolai Gayle,Steen Søren Trads,Poulsen Lina,Pedersen Jesper Grønnegaard

Abstract

Abstract We present two new models for wind turbine interaction effects and a recipe for combining them. The first model is an extension of the Park model, which explicitly incorporates turbulence, both the ambient atmospheric turbulence and the turbulence generated in the wake itself. This Turbulence Optimized Park model is better equipped to describe wake recovery over long distances such as between wind farms, where the wake expansion slows down as the turbine-generated turbulence decays. The second model is a first version of a full engineering wind farm blockage model. In the same vein as the wake model it adds blockage contributions from the individual wind turbines to form an aggregated wind farm scale blockage effect that can be incorporated directly into the park power curve and annual energy calculations. The wake model and the blockage model describe downstream and upstream turbine interaction effects, respectively. They are coupled as the outputs of one model are the inputs to the other model and vice versa. We describe how this coupling is achieved through an iterative process. We give early stage examples of the validation of the two models and discuss how they might be further validated and improved in the future.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3