The emergence of supersonic flow on wind turbines

Author:

De Tavernier Delphine,Terzi Dominic von

Abstract

Abstract The future generation of wind turbines will be characterised by longer and more flexible blades. These large wind turbines are facing higher Reynolds numbers, as a consequence of longer chord lengths and increased relative wind speeds. Higher tip speeds, however, also result in an increased Mach number. Although the maximum tip speed in steady design conditions may remain (well) below the critical value, the presence of turbulence, wind gusts, blade deflections, etc. in combination with the flow acceleration over the airfoil surface, may cause a significant increase in the velocity perceived over the blade surface. We have evaluated the operational conditions of the IEA 15MW reference turbine using OpenFAST in normal design and off-design conditions to demonstrate that, if unabated, near-future wind turbines will be at risk of suffering from local supersonic flow. The driving factor is identified to be inflow turbulence, however, the tip airfoil is also of major importance. Local supersonic flow conditions may lead to severe lifetime degradation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Grand challenges in the science of wind energy;Veers;Science,2019

2. Mini-symposium: wind turbine and plant optimization beyond LCoE;von Terzi,2021

3. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data;Pires;Journal of Physics: Conf. Series,2016

4. Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels;Pires;Journal of Physics: Conf. Series,2016

5. Study of Reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel;Brunner;Experiments in Fluids,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3