Author:
Fallahzadeh R,Bozzoli F,Cattani L
Abstract
Abstract
As a primary boiling mode, explosive boiling has shown a promising future in many applications and received much research attention. The topology of the solid surface in contact with the liquid, particularly nanostructured surfaces, significantly affects the onset time of explosive boiling of a liquid nanofilm. Most studies investigated explosive boiling on non-closed-loop (parallel) nanochannel surfaces. Here, for the first time, explosive boiling in a closed-loop nanochannel was studied by the non-equilibrium molecular dynamics simulation method. Explosive boiling of liquid argon nanofilm on solid copper surfaces with different topologies, including an ideally smooth, a non-closed-loop, and a closed-loop nanochannel, was simulated. The results showed that, compared with the ideally smooth surface, the onset time of explosive boiling decreased for the non-closed-loop and closed-loop nanochannel surfaces. However, it turned out that compared to the non-closed-loop nanochannel, using the closed-loop nanochannel has an adverse effect on heat flux and the onset time of explosive boiling.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献