Development of Bridge and Lever Type Compact Compliant Mechanism for Micro Positioning Systems

Author:

Marathe Parag,Pardeshi Sujit S.,Deshmukh Bhagyesh

Abstract

Abstract Nowadays, for precision positioning applications (Micro-Electro-Mechanical Systems, Nano/Micro positioning devices), compliant mechanisms are extensively used over traditional mechanisms. Compliant mechanisms are joint less mechanism having merits as no wear and friction, no backlash and no lubrication. In this paper, a newly developed flexure hinge based bridge and lever type compact compliant mechanism has been proposed for the precision linear displacement applications. This mechanism can be used in the portable cameras for image stabilization, lens shutters, alignment and levelling devices, etc. The key performance parameters for developing the compliant mechanism are the input displacement/force, output displacement and amplification ratio. For designing compact amplified compliant mechanism (CACM), Pseudo-Rigid-Body-Model (PRBM) method is used. The finite element analysis of developed micro-displacement amplifier compliant mechanisms carried out by using ANSYS workbench. The analyses and experimentation is performed for the input displacement, output displacement and amplification ratio of mechanism. An input force range considered for analysis is in between 1 N to 50 N. All the results from analytical, simulation and experimentation are compared. The error in output displacement is observed up to 6% and the geometric amplification ratio for the mechanism is observed up to 6.5.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. Optimal Design of Micro/Nano Positioning Stage with Wide Range and High Speed Based on Flexure Structure;Li;IOP conference series: Materials Science and Engineering,2017

2. Design of Compact Compliant Devices – Mathematical Models vs. Experiments;Hricko;American Journal of Mechanical Engineering,2015

3. A tensural displacement amplifier employing elliptic-arc flexure hinges;Chena;Sensors and Actuators, A.,2016

4. A Totally Decoupled Piezo-Driven XYZ Flexure Parallel Micropositioning Stage for Micro/Nanomanipulation;Li;IEEE Transactions On Automation Science And Engineering,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3