Topology optimization design of compliant amplification mechanisms with low parasitic displacement

Author:

Wang Qiliang,Wei JianmingORCID,Long Yiping,Tan Jianping

Abstract

Abstract Compliant amplification mechanisms amplify input displacement in the desired output direction. However, owing to structural design, parasitic motion can easily be produced in an unexpected direction. The parasitic motion has a negative effect on the motion accuracy of the mechanism. To solve this problem, a topology optimization method for compliant amplification mechanisms with low parasitic displacement was proposed. Based on the variable density topology optimization method, the topology optimization model of the compliant amplification mechanism was established with the goal of increasing the output displacement and reducing the parasitic displacement. Volume ratio was set as constraint condition. The optimization criterion method were used to solve the problem and topology optimized amplification mechanisms (TOAMs) were obtained. Simultaneously, the configuration characteristics and displacement amplification ratios of the mechanism under different virtual spring stiffnesses were compared. To verify the validity of the method, the performance of the TOAM and the typical amplification mechanism (TAM) were compared using finite element simulation. The displacement amplification ratio is 5.95 and 3.17, and the relative parasitic displacement is 0.6% and 10.27%, respectively. Finally, the performance of the TOAM and the TAM was verified by experiments. The displacement amplification ratio is 5.72 and 3.06, and the relative parasitic displacement is 0.95% and 10.64%, respectively. Simulation and experimental results show that the TOAM has a larger displacement amplification ratio and a lower parasitic displacement, which verifies the validity of this method.

Funder

National Natural Science Foundation of China

Science Foundation of Jiangxi Department of Education

Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology

Natural Science Foundation of Jiangxi Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3