Short-term load prediction of integrated energy system based on neural network

Author:

Wang Yao,Li Xuxia,Liang Yan,Hu Yingying,Zheng Xiaoming,Deng Jiaojiao

Abstract

Abstract Considering the correlation and nonlinear characteristics of multiple types of loads in the integrated energy system, grey relation analysis (GRA) and long short term Memory (LSTM) neural network are selected to establish the short-term load prediction model of the integrated energy system. The model uses GRA method to analyze the coupling between multiple types of loads and the meteorological factors, and then obtains the load forecast results through the LSTM prediction model. Finally, a practical example is given to verify the validity of the model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. A medium and long-term load forecasting method based on wavelet analysis and Elman dynamic neural network [J];Zhao;Shanxi Electric Power,2013

2. Power system load forecasting based on wavelet support vector regression [J];Chen;Modern Electronic Technology,2009

3. A combined load forecasting model based on multi neural network [J];Zhang;Power System Technology,2006

4. Load forecasting method for cogeneration system based on multivariate phase space reconstruction and Kalman filtering [J];Zhao;Proceedings of the CSEE,2016

5. Distribution network loss forecasting based on GCA and LSTM neural network [J];Deng;Guangdong Electric Power,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3