Energy and exergy analysis economic of continuous vibrating fluidized bed drying on celery drying

Author:

Handayani S U,Atmanto I S,Putri F T,Fujiwara S

Abstract

Abstract This paper present the experimental work of celery drying using continuous vibrating fluidized bed drying. Fresh celery leaves dried at 50°C, 60°C and 70°C in continuous vibrating fluidized bed dryer with a dimension of 2350 mm × 300 mm. Energy and exergy analysis was conducted to determine the performance of the system, among others, energy utilization, energy efficiency, and efficiency of the exergy so it can be known potential energy savings can be obtained. From the calculation results can be concluded that the increase in drying temperature will increase energy utilization and energy utilization ratio and decrease the efficiency of the exergy. Average energy utilization ratio at 50°C is 0.0768, at 60°C is 0.1199 and at 70°C is 0.1682. Exergy efficiencies decrease with increasing temperature. Average exergy efficiencies are 0.19, 0,16 and 0.17 for 50°, 60° and 70°C drying temperature respectively. The main factor that causes thermodynamic inefficiency is the exergy that leaves the system, exergy destruction and loss of exergy to the surrounding air.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3