Energy and Exergy Efficiencies of Fluidized and Fixed Bed Rice Drying

Author:

Luthra Kaushik,Sadaka Sammy

Abstract

HighlightsFluidized bed drying of rough riceat 40°C with or without ambient air dehumidification worked best based on the energy and exergy utilization.The dryer lost exergy in the exit air, which was the primary cause of thermal inefficiency; recirculation of the exit air could improve the exergy efficiency.Ambient air dehumidification did not reduce the dryer’s energy utilization and exergy efficiency for rough rice.Abstract. Fluidized bed drying of rough rice in the U.S. has not been used to its full potential due to a lack of research to address rice quality impacts and energy consumption. Little research has been done to analyze the energy and exergy of fluidized bed drying of rough rice. Thermal analysis allows using the drying air’s energy better and improving the drying system’s thermal efficiency. In this study, energy utilization and energy utilization ratio were calculated using the first law of thermodynamics, while exergy loss and exergy efficiency were determined using the second law. Drying air temperature (40°C, 45°C, or 50°C), drying bed condition (fluidized or fixed), drying duration (30, 45, or 60 min), and ambient air dehumidification (yes or no) were the tested factors. A lab-scale drying system designed in a previous study was used. Three replicates were performed to minimize any bias or human errors. All factors significantly affected the energy and exergy of the drying process, except dehumidification and replication. The minimum and maximum energy utilization values were 0.01 and 0.55 kJ s-1 for fixed bed drying at 40°C for 30 min with dehumidification and fluidized bed drying at 50°C for 60 min without dehumidification, respectively. The minimum and maximum exergy efficiency values were 13.46% and 49.14% for fixed bed drying at 45°C for 45 min with dehumidification and fluidized bed drying at 40°C for 60 min with dehumidification, respectively. The primary cause of thermal inefficiency was attributed to the energy and exergy losses in the exit air, while the secondary source was the exergy and energy losses from the drying chamber and inlet air pipes. Costly solutions could be recirculation of the exit air and better insulation of the drying chamber and inlet pipes. However, using the optimal drying conditions for the energy and exergy utilization of the drying air is suggested. This study found that fluidized bed drying was better than fixed bed drying overall. At the primary drying stage, fluidized bed drying had a higher exergy efficiency, energy utilization, and energy utilization ratio than fixed bed drying. At 40°C, fluidized bed drying with or without ambient air dehumidification worked best based on the energy and exergy utilization of the drying system. Keywords: Dehumidification, Energy, Exergy, Fixed bed, Fluidized bed, Rice drying.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3