What do artificial neural networks learn? A study for analysis of RBS spectra

Author:

Oliveira V G,Silva T F

Abstract

Abstract The massive analysis of Rutherford Backscattering Spectrometry (RBS) data is complex. When the data is processed manually, it requires a long time of an experienced person. Artificial Neural Networks (ANN) can analyze, speed up, and automate data processing. In fact, after training, the ANN processes one RBS spectrum in a fraction of a second with the advantage of keeping the consistency over the whole set of spectra. Our group used ANN to process a large set of RBS spectra from the inner walls of the vacuum chamber of the W7-X fusion reactor. In this work, we used a perturbation-based method to study the local explanations of the neural network predictions. In this method, we apply small perturbations to the inputs. Then, the outputs’ variations are evaluated. Thereby activation maps were created to visualize how sensitive the ANN is to perturbations. The activation maps enable the identification of the parts of the spectrum the neural network is getting information to make predictions. Therefore, we can better understand the behavior of the machine learning model and verify if the neural network learned the features of the spectra similarly to humans.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A machine learning approach to self-consistent RBS data analysis and combined uncertainty evaluation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-06

2. Enhanced accuracy through machine learning-based simultaneous evaluation: a case study of RBS analysis of multinary materials;Scientific Reports;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3