High-performance inline RF MEMS switch for application in 5G mobile networks

Author:

Tkachenko A V,Lysenko I E,Kovalev A V,Vertyanov D V

Abstract

Abstract This article presents the results of the design and analysis of a radio-frequency switch made using microelectromechanical systems technology. The device is the capacitive switch with a hybrid type of contact, in which the movable electrode of the structure – the metal membrane is part of the microwave signal line of the coplanar waveguide. The switch design is characterized by a high capacitance ratio and low contact resistance. The zig-zag elastic suspension is used to reduce the value of the pull-down voltage – 2 V and the switching time ∼ 7 us. The central resonant frequency of the switch is 3.8 GHz. In this case, in the open state, the value of the insertion loss is not more than -0.2 dB and the isolation value in the close state is not less than -55 dB. The effective frequency range is the S-band, as well as the C-, X- and Ku-band, in which the isolation value is at least -30 dB. The presented inline RF MEMS switch is suitable for use in various types of ground and satellite communications, in particular for devices and systems of 5G mobile networks.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Research Status and Development Trend of MEMS Switches: A Review;Tongtong;J. Micromachines,2020

2. High-capacitance-ratio warped-beam capacitive MEMS switch designs;Al-Dahleh;J. of Microelectromechanical Syst.,2010

3. Innovative micromachined microwave switch with very low insertion loss;Chang;J. Sensors and Actuators A: Physical,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3