Author:
Shoaib Mohamed R.,Elshamy Mohamed R.,Taha Taha E.,El-Fishawy Adel S.,Abd El-Samie Fathi E.
Abstract
Abstract
Brain tumor is an acute cancerous disease that results from abnormal and uncontrollable cell division. Brain tumors are classified via biopsy, which is not normally done before the brain ultimate surgery. Recent advances and improvements in deep learning technology helped the health industry in getting accurate disease diagnosis. In this paper, a Convolutional Neural Network (CNN) is adopted with image pre-processing to classify brain Magnetic Resonance (MR) images into four classes: glioma tumor, meningioma tumor, pituitary tumor and normal patients, is provided. We use a transfer learning model, a CNN-based model that is designed from scratch, a pre-trained inceptionresnetv2 model and a pre-trained inceptionv3 model. The performance of the four proposed models is tested using evaluation metrics including accuracy, sensitivity, specificity, precision, F1_score, Matthew’s correlation coefficient, error, kappa and false positive rate. The obtained results show that the two proposed models are very effective in achieving accuracies of 93.15% and 91.24% for the transfer learning model and BRAIN-TUMOR-net based on CNN, respectively. The inceptionresnetv2 model achieves an accuracy of 86.80% and the inceptionv3 model achieves an accuracy of 85.34%. Practical implementation of the proposed models is presented.
Subject
General Physics and Astronomy
Reference17 articles.
1. An Automatic LearningBased Framework for Robust Nucleus Segmentation;Xing;IEEE TRANSACTIONS ON MEDICAL IMAGING,2016
2. Brain tumor detection based on Naïve Bayes classification;Zaw,2019
3. An Efficient Optimization Technique to Detect Brain Tumor from MRI Images;Narayana,2018
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献