Efficient Brain Tumor Detection Based on Deep Learning Models

Author:

Shoaib Mohamed R.,Elshamy Mohamed R.,Taha Taha E.,El-Fishawy Adel S.,Abd El-Samie Fathi E.

Abstract

Abstract Brain tumor is an acute cancerous disease that results from abnormal and uncontrollable cell division. Brain tumors are classified via biopsy, which is not normally done before the brain ultimate surgery. Recent advances and improvements in deep learning technology helped the health industry in getting accurate disease diagnosis. In this paper, a Convolutional Neural Network (CNN) is adopted with image pre-processing to classify brain Magnetic Resonance (MR) images into four classes: glioma tumor, meningioma tumor, pituitary tumor and normal patients, is provided. We use a transfer learning model, a CNN-based model that is designed from scratch, a pre-trained inceptionresnetv2 model and a pre-trained inceptionv3 model. The performance of the four proposed models is tested using evaluation metrics including accuracy, sensitivity, specificity, precision, F1_score, Matthew’s correlation coefficient, error, kappa and false positive rate. The obtained results show that the two proposed models are very effective in achieving accuracies of 93.15% and 91.24% for the transfer learning model and BRAIN-TUMOR-net based on CNN, respectively. The inceptionresnetv2 model achieves an accuracy of 86.80% and the inceptionv3 model achieves an accuracy of 85.34%. Practical implementation of the proposed models is presented.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. An Automatic LearningBased Framework for Robust Nucleus Segmentation;Xing;IEEE TRANSACTIONS ON MEDICAL IMAGING,2016

2. Brain tumor detection based on Naïve Bayes classification;Zaw,2019

3. An Efficient Optimization Technique to Detect Brain Tumor from MRI Images;Narayana,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3