Improving Brain Tumor Classification: An Approach Integrating Pre-Trained CNN Models and Machine Learning Algorithms
Author:
Shoaib Mohamed R.ORCID, Zhao Jun, Emara Heba M., Mubarak Ahmed F.S., Omer Osama A., Abd El-Samie Fathi E., Esmaiel Hamada
Reference66 articles.
1. Kumar, S., et al.: Brain tumor classification using deep neural network and transfer learning. Brain topography 36(3), 305–318 (2023). 2. Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. In: World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic, vol. 1, pp. 183–189. Springer, Berlin, Heidelberg (2019). 3. Ayadi, W., Elhamzi, W., Charfi, I., Atri, M.: Deep cnn for brain tumor classification. Neural processing letters 53, 671–700 (2021). 4. Shoaib, M.R., Elshamy, M.R., Taha, T.E., El-Fishawy, A.S., El-Samie, F.E.A.: Efficient deep learning models for brain tumor detection with segmentation and data augmentation techniques. Concurrency and Computation: Practice and Experience 34(21), 7031 (2022). 5. Shoaib, M.R., et al.: Efficient brain tumor detection based on deep learning models. In: ICaTAS Conference. Journal of Physics: Conference Series, vol. 2107, p. 012012. IOP Publishing, Bristol, UK (2021).
|
|