Extended analytical solutions of the Bohr Hamiltonian with the sextic oscillator: Pt-Os isotopes

Author:

Baid SORCID,Lévai GORCID,Arias J MORCID

Abstract

Abstract The sextic oscillator adapted to the Bohr Hamiltonian has been used to describe even Pt and Os isotopes from A = 188 to 198 and A = 186 to 192, respectively. The purpose of this study was to investigate the possible transition from the γ-unstable to the spherical vibrator shape phases. In this setup the potential appearing in the Bohr Hamiltonian is independent from the γ shape variable, and the physical observables (energy eigenvalues, B(E2)) can be obtained in closed analytical form within the quasi-exactly solvable formalism for the model space containing 30 of the lowest-lying levels. Experimental energy levels have been associated with the theoretical ones. The available electric quadrupole transition data (B(E2), decay preferences) have been taken into account in matching the experimental and theoretical levels. Special attention has been paid to transitions from the first two excited 0+ levels to the 2 1 + and 2 2 + levels, as these indicate the change of shape phases with spherical and deformed potential minimum. The three parameters of the Hamiltonian have been determined by a weighted least square fit procedure. Trends in the location of states belonging to the ground-state, the K π = 2+ and two excited K π = 0+ bands have been analysed. The trajectory determined by the fitted parameters in the two-dimensional phase space has also been plotted, and it has been found that all the nuclei are characterized by a deformed potential minimum, except for the heaviest Pt isotope (198Pt), for which the transition to the spherical shape phase is realised. Although the spectroscopic information on the next isotopes of the chains (200Pt and 194Os) is far less complete, there are indications that these nuclei are also close to or fall within the domain of spherical potential minimum.

Funder

National Research, Development and Innovation Fund

Ministerio de Ciencia e Innovación

Consejeria de Conocimiento, Investigacion y Universidad, Junta de Andalucia

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3