Nuclear Shape-Phase Transitions and the Sextic Oscillator

Author:

Lévai Géza1ORCID,Arias José M.23ORCID

Affiliation:

1. HUN-REN Institute for Nuclear Research (ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary

2. Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain

3. Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain

Abstract

This review delves into the utilization of a sextic oscillator within the β degree of freedom of the Bohr Hamiltonian to elucidate critical-point solutions in nuclei, with a specific emphasis on the critical point associated with the β shape variable, governing transitions from spherical to deformed nuclei. To commence, an overview is presented for critical-point solutions E(5), X(5), X(3), Z(5), and Z(4). These symmetries, encapsulated in simple models, all model the β degree of freedom using an infinite square-well (ISW) potential. They are particularly useful for dissecting phase transitions from spherical to deformed nuclear shapes. The distinguishing factor among these models lies in their treatment of the γ degree of freedom. These models are rooted in a geometrical context, employing the Bohr Hamiltonian. The review then continues with the analysis of the same critical solutions but with the adoption of a sextic potential in place of the ISW potential within the β degree of freedom. The sextic oscillator, being quasi-exactly solvable (QES), allows for the derivation of exact solutions for the lower part of the energy spectrum. The outcomes of this analysis are examined in detail. Additionally, various versions of the sextic potential, while not exactly solvable, can still be tackled numerically, offering a means to establish benchmarks for criticality in the transitional path from spherical to deformed shapes. This review extends its scope to encompass related papers published in the field in the past 20 years, contributing to a comprehensive understanding of critical-point symmetries in nuclear physics. To facilitate this understanding, a map depicting the different regions of the nuclide chart where these models have been applied is provided, serving as a concise summary of their applications and implications in the realm of nuclear structure.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference54 articles.

1. Landau, L.D., and Lifshitz, E.M. (1969). Statistical Physics, Pergamon Press.

2. Quantum Phase Transitions in Mesoscopic Systems;Iachello;Phys. Rev. Lett.,2004

3. Sachdev, S. (1999). Quantum Phase Transitions, Cambridge University Press.

4. Carr, L. (2011). Understanding Quantum Phase Transitions, CRC Press.

5. Bohr, A., and Mottelson, B. (1975). Nuclear Structure, Benjamin.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3