Dissipation of energy and higher-order fluctuations of the largest fragment charge in projectile fragmentation

Author:

Xiao Erxi,Feng Yujie,Lei Xin,Zhu LongORCID,Su JunORCID

Abstract

Abstract The higher-order fluctuations of the largest fragment charge were found to exhibit the signatures of a second-order phase transition in experimental data and simulations of the statistical multifragmentation model recently (Pietrzak et al 2020 Phys. Lett. B 809 135763). This work is devoted to study the dissipation of energy and higher-order fluctuations of the largest fragment charge in projectile fragmentation. The isospin-dependent quantum molecular dynamics (IQMD) model is used to study the non-equilibrium thermalization and fragmentation. The statistical code GEMINI is applied to simulate the second decay of the pre-fragments. To reveal how the incident energy dissipates into the excitation energy of the projectile-like system, the time evolution of the density, collective velocity, and random kinetic energy are displayed. It is found that the competition between the heat conduction and heat flux affects the excitation energy of the projectile-like system, which is the key variable in the fragmenting process. Displaying the mean multiplicity of the intermediate mass fragments and the higher-order fluctuations of the largest fragment charge, it is found that the decay mechanism of the projectile-like system transfers from the multi-fragmentation at mid-peripheral collision into the nucleon-evaporation at peripheral collision. The pseudo-critical point of this transition can be indicated by the zero of third order fluctuation together with the minimum of fourth order fluctuation. The calculations of the pseudo-critical point by the IQMD + GEMINI model agree with that extracted from the experimental data. Finally, the influences of the pseudo-critical point by the second decay, the mass number of the colliding system, and the incident energy are studied.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3