Uncertainties of critical temperatures based on higher-order fluctuations of the largest fragment charge*

Author:

Xiao 肖 Erxi 尔熙,Lei 雷 Xin 昕,Huang 黄 Yingge 英格,Feng 冯 Yujie 玉洁,Zhu 祝 Long 龙,Su 苏 Jun 军

Abstract

Abstract The new signature of liquid-gas phase transition has been well indicated by the higher-order fluctuations of the largest fragment charge, but the uncertainties of critical temperatures based on this signature have not been revealed. This study extracts the critical temperatures of liquid-gas phase transition in nuclear reactions and investigates their uncertainties. Utilizing the isospin-dependent quantum molecular dynamics model in conjunction with the statistical model GEMINI enables us to describe the dynamical path from the initial to the final state. An isotope thermometer and a quantum fluctuation thermometer are employed to extract the nuclear temperature. The higher-order fluctuations of the largest fragment charge and critical temperatures are studied in 124Sn + 120Sn collisions ranging from 400 to 1000 MeV/nucleon and 124Sn + AZ collisions at 600 MeV/nucleon. Observations revealed that the pseudo-critical point is robustly indicated by the higher-order fluctuations of the largest fragment charge. The critical temperatures extracted by the isotope thermometer are relatively consistent, with an uncertainty of 15%, while those obtained by the quantum fluctuation thermometer are heavily influenced by the incident energy and mass number of target nuclei. The excitation energy and bound charge are used for event-sorting. These two ensembles represent the statistical properties of the initial and final states of the system, respectively. The initial-final correlations of statistical properties might lead to two phenomena. First, the size distribution of the largest fragment at the pseudo-critical point based on the ensemble is wide, while that based on ensemble exhibits bimodality, which is a typical characteristic in the liquid-gas coexistence of a finite system. Second, the temperature at the pseudo-critical point based on the ensemble is higher than that based on the ensemble. Furthermore, the projectile-like system exhibits a significant dynamical effect in its evolution path from the initial to final state, closely associated with the fluctuation of critical temperature.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, Sun Yat-sen University

Key Laboratory of Nuclear Data foundation

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3