Author:
Galtung Sondre Tesdal,Raynaud Xavier
Abstract
Abstract
We define a kinetic and a potential energy such that the principle of stationary action from Lagrangian mechanics yields a Camassa–Holm system (2CH) as the governing equations. After discretizing these energies, we use the same variational principle to derive a semi-discrete system of equations as an approximation of the 2CH system. The discretization is only available in Lagrangian coordinates and requires the inversion of a discrete Sturm–Liouville operator with time-varying coefficients. We show the existence of fundamental solutions for this operator at initial time with appropriate decay. By propagating the fundamental solutions in time, we define an equivalent semi-discrete system for which we prove that there exists unique global solutions. Finally, we show how the solutions of the semi-discrete system can be used to construct a sequence of functions converging to the conservative solution of the 2CH system.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献