Author:
Bui The Anh,D’Ancona Piero
Abstract
Abstract
Consider the operator on
L
2
(
R
d
)
L
a
=
(
−
Δ
)
α
/
2
+
a
|
x
|
−
α
with
0
<
α
<
m
i
n
{
2
,
d
}
. Under the condition
a
⩾
−
2
α
Γ
(
(
d
+
α
)
/
4
)
2
Γ
(
(
d
−
α
)
/
4
)
2
the operator is non negative and selfadjoint. We prove that fractional powers
L
a
s
/
2
for s ∈ (0, 2] satisfy the estimates
L
a
s
/
2
f
L
p
≲
(
−
Δ
)
α
s
/
4
f
L
p
,
(
−
Δ
)
s
/
2
f
L
p
≲
L
a
α
s
/
4
f
L
p
for suitable ranges of p. Our result fills the remaining gap in earlier results from Killip et al (2018 Math. Z.
288 1273–98); Merz (2021 Math. Z.
299 101–21); Frank et al (Int. Math. Res. Not.
2021 2284–303). The method of proof is based on square function estimates for operators whose heat kernel has a weak decay.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献