Affiliation:
1. Department of Mathematics , Indian Institute of Science Education and Research , Dr. Homi Bhaba Road , Pune - , India
2. Dipartimento di Matematica e Informatica , Università degli Studi di Perugia – Via Vanvitelli 1 , , Perugia , Italy
Abstract
Abstract
This paper deals with existence and multiplicity of positive solutions to the following class of nonlocal equations with critical nonlinearity:
(
−
Δ
)
s
u
−
γ
u
|
x
|
2
s
=
K
(
x
)
|
u
|
2
s
∗
(
t
)
−
2
u
|
x
|
t
+
f
(
x
)
in
R
N
,
u
∈
H
˙
s
(
R
N
)
,
$$\begin{array}{}
\displaystyle
\begin{cases}
(-{\it\Delta})^s u -\gamma\dfrac{u}{|x|^{2s}}=K(x)\dfrac{|u|^{2^*_s(t)-2}u}{|x|^t}+f(x) \quad\mbox{in}\quad\mathbb R^N,\\
\qquad\qquad\qquad\quad u\in \dot{H}^s(\mathbb R^N),
\end{cases}
\end{array}$$
where N > 2s, s ∈ (0, 1), 0 ≤ t < 2s < N and
2
s
∗
(
t
)
:=
2
(
N
−
t
)
N
−
2
s
$\begin{array}{}
\displaystyle
2^*_s(t):=\frac{2(N-t)}{N-2s}
\end{array}$
. Here 0 < γ < γ
N,s
and γ
N,s
is the best Hardy constant in the fractional Hardy inequality. The coefficient K is a positive continuous function on ℝ
N
, with K(0) = 1 = lim|x|→∞
K(x). The perturbation f is a nonnegative nontrivial functional in the dual space Ḣs
(ℝ
N
)′ of Ḣs
(ℝ
N
). We establish the profile decomposition of the Palais-Smale sequence associated with the functional. Further, if K ≥ 1 and ∥f∥(Ḣs
)′ is small enough (but f ≢ 0), we establish existence of at least two positive solutions to the above equation.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献