Author:
Vincenzi Dario,Gibbon John D
Abstract
Abstract
Shell models have found wide application in the study of hydrodynamic turbulence because they are easily solved numerically even at very large Reynolds numbers. Although bereft of spatial variation, they accurately reproduce the main statistical properties of fully-developed homogeneous and isotropic turbulence. Moreover, they enjoy regularity properties which still remain open for the three-dimensional (3D) Navier–Stokes equations (NSEs). The goal of this study is to make a rigorous comparison between shell models and the NSEs. It turns out that only the estimate of the mean energy dissipation rate is the same in both systems. The estimates of the velocity and its higher-order derivatives display a weaker Reynolds number dependence for shell models than for the 3D NSEs. Indeed, the velocity-derivative estimates for shell models are found to be equivalent to those corresponding to a velocity gradient averaged version of the 3D Navier–Stokes equations (VGA-NSEs), while the velocity estimates are even milder. Numerical simulations over a wide range of Reynolds numbers confirm the estimates for shell models.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献