How close are shell models to the 3D Navier–Stokes equations?

Author:

Vincenzi Dario,Gibbon John D

Abstract

Abstract Shell models have found wide application in the study of hydrodynamic turbulence because they are easily solved numerically even at very large Reynolds numbers. Although bereft of spatial variation, they accurately reproduce the main statistical properties of fully-developed homogeneous and isotropic turbulence. Moreover, they enjoy regularity properties which still remain open for the three-dimensional (3D) Navier–Stokes equations (NSEs). The goal of this study is to make a rigorous comparison between shell models and the NSEs. It turns out that only the estimate of the mean energy dissipation rate is the same in both systems. The estimates of the velocity and its higher-order derivatives display a weaker Reynolds number dependence for shell models than for the 3D NSEs. Indeed, the velocity-derivative estimates for shell models are found to be equivalent to those corresponding to a velocity gradient averaged version of the 3D Navier–Stokes equations (VGA-NSEs), while the velocity estimates are even milder. Numerical simulations over a wide range of Reynolds numbers confirm the estimates for shell models.

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference47 articles.

1. The phenomenology of small-scale turbulence;Sreenivasan;Annu. Rev. Fluid Mech.,1997

2. Fluid turbulence;Sreenivasan;Rev. Mod. Phys.,1999

3. On the scaling of the turbulence energy dissipation rate;Sreenivasan;Phys. Fluids,1984

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3