Comparison of Stochastic Parametrization Schemes Using Data Assimilation on Triad Models

Author:

Lobbe Alexander,Crisan Dan,Holm Darryl,Mémin Etienne,Lang Oana,Chapron Bertrand

Abstract

AbstractIn recent years, stochastic parametrizations have been ubiquitous in modelling uncertainty in fluid dynamics models. One source of model uncertainty comes from the coarse graining of the fine-scale data and is in common usage in computational simulations at coarser scales. In this paper, we look at two such stochastic parametrizations: the Stochastic Advection by Lie Transport (SALT) parametrization introduced by Holm (Proc A 471(2176):20140963, 19, 2015) and the Location Uncertainty (LU) parametrization introduced by Mémin (Geophys Astrophys Fluid Dyn 108(2):119–146, 2014). Whilst both parametrizations are available for full-scale models, we study their reduced order versions obtained by projecting them on a complex vector Fourier mode triad of eigenfunctions of the curl. Remarkably, these two parametrizations lead to the same reduced order model, which we term the helicity-preserving stochastic triad (HST). This reduced order model is then compared with an alternative model which preserves the energy of the system, and which is termed the energy preserving stochastic triad (EST). These low-dimensional models are ideal benchmark models for testing new Data Assimilation algorithms: they are easy to implement, exhibit diverse behaviours depending on the choice of the coefficients and come with natural physical properties such as the conservation of energy and helicity.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3