A density-constrained model for chemotaxis

Author:

Kim Inwon,Mellet Antoine,Wu Yijing

Abstract

Abstract We consider a model of congestion dynamics with chemotaxis: the density of cells follows a chemical signal it generates, while subject to an incompressibility constraint. The incompressibility constraint results in the formation of patches, describing regions where the maximal density has been reached. The dynamics of these patches can be described by either Hele-Shaw or Richards equation type flow (depending on whether we consider the model with diffusion or the model with pure advection). Our focus in this paper is on the construction of weak solutions for this problem via a variational discrete time scheme of JKO type. We also establish the uniqueness of these solutions. In addition, we make more rigorous the connection between this incompressible chemotaxis model and the free boundary problems describing the motion of the patches in terms of the density and associated pressure variable. In particular, we obtain new results characterising the pressure variable as the solution of an obstacle problem and prove that in the pure advection case the dynamic preserves patches.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlocal Cahn–Hilliard Equation with Degenerate Mobility: Incompressible Limit and Convergence to Stationary States;Archive for Rational Mechanics and Analysis;2024-05-13

2. Density-constrained Chemotaxis and Hele-Shaw flow;Transactions of the American Mathematical Society;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3