Certifying unknown genuine multipartite entanglement by neural networks

Author:

Chen Zhenyu,Lin Xiaodie,Wei ZhaohuiORCID

Abstract

Abstract Suppose we have an unknown multipartite quantum state, how can we experimentally find out whether it is genuine multipartite entangled or not? Recall that even for a bipartite quantum state whose density matrix is known, it is already NP-Hard to determine whether it is entangled or not. Therefore, it is hard to efficiently solve the above problem generally. However, since genuine multipartite entanglement (GME) is such a fundamental concept that plays a crucial role in many-body physics and quantum information processing tasks, finding realistic approaches to certify GME is undoubtedly necessary. In this work, we show that neural networks can provide a nice solution to this problem, where measurement statistics data produced by measuring involved quantum states with local measurement devices serve as input features of neural networks. By testing our models on many specific multipartite quantum states, we show that they can certify GME very accurately, even including some new results unknown before. We also exhibit a possible way to improve the efficiency of our models by reducing the size of features. Lastly, we show that our models enjoy remarkable robustness against flaws in measurement devices, implying that they are very experiment-friendly.

Funder

Key R&D Program of China

National Natural Science Foundation of China, Grant

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3