Detection of quantum steering for the generalized Werner states via artificial neural networks

Author:

Pan Guo-Zhu,Zou Shu-Ting,Yang Ming,Zhou Jian,Zhang Gang

Abstract

Abstract Quantum steering is an important nonlocal resource and has a wide range of applications in quantum information processing. Although a lot of steering criteria have been proposed, it is still very difficult to efficiently detect quantum steering in experiment. Here we employ machine learning techniques to tackle the problem of quantum steering detection in two-qubit system. The quantum steering and un-steering inequalities are combined together, so as to construct quantum steering classifiers for the generalized Werner states via artificial neural networks. More steerable and unsteerable quantum states can be identified by the classifiers proposed here than by the quantum steering inequality or un-steering inequality, which provides a new way to detect steering with only partial information of the given quantum states. We consider two types of artificial neural networks, one is the single-layer perceptron and the other is the multi-layer perceptron. The result shows that the multi-layer perceptron outperforms the single-layer perceptron in terms of accuracy. Compared with the existing quantum steering criteria, our methods do not require the whole information of the quantum state, and the steering of it is detected by using state-independent measurements, so it is easy to realize in experiment.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous),Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3