Abstract
Abstract
Quantum interferometry based on induced-coherence phenomena has demonstrated the possibility of undetected-photon measurements. Perturbation in the optical path of probe photons can be detected by interference signals generated by quantum mechanically correlated twin photons propagating through a different path, possibly at a different wavelength. To the best of our knowledge, this work demonstrates for the first time a hybrid-type induced-coherence interferometer that incorporates a Mach–Zehnder-type interferometer for near-visible photons and a Michelson-type interferometer for infrared (IR) photons, based on double-pass-pumped spontaneous parametric down-conversion. This configuration enables IR optical measurements via the detection of near-visible photons and provides methods for optimizing the quality of measurements by identifying photon pairs of different origins. We theoretically identify that the induced-coherence interference visibility is approximately the same as the heralding efficiency between twin photons along the relevant spatial modes, and experimentally maximize the visibility by setting up a common reference spatial mode for IR photons. Applications to both time-domain and frequency-domain quantum optical induced-coherence tomography for three-dimensional test structures are demonstrated. The results prove the feasibility of practical undetected-photon sensing and imaging techniques based on the presented structure.
Funder
Korea Research Institute of Standards and Science
National Research Council of Science and Technology
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献