Is quantum computing green? An estimate for an energy-efficiency quantum advantage

Author:

Jaschke DanielORCID,Montangero SimoneORCID

Abstract

Abstract The quantum advantage threshold determines when a quantum processing unit (QPU) is more efficient with respect to classical computing hardware in terms of algorithmic complexity. The ‘green’ quantum advantage threshold—based on a comparison of energetic efficiency between the two—is going to play a fundamental role in the comparison between quantum and classical hardware. Indeed, its characterization would enable better decisions on energy-saving strategies, e.g. for distributing the workload in hybrid quantum–classical algorithms. Here, we show that the green quantum advantage threshold crucially depends on (a) the quality of the experimental quantum gates and (b) the entanglement generated in the QPU. Indeed, for noisy intermediate-scale quantum hardware and algorithms requiring a moderate amount of entanglement, a classical tensor network emulation can be more energy-efficient at equal final state fidelity than quantum computation. We compute the green quantum advantage threshold for a few paradigmatic examples in terms of algorithms and hardware platforms, and identify algorithms with a power-law decay of singular values of bipartitions—with power-law exponent α 1 —as the green quantum advantage threshold in the near future.

Funder

Italian Ministry of Education, Universities, and Research

Federal Ministry of Education and Research

Euro HPC JU

EU-QuantERA

WCRI-Quantum Computing and Simulation Center of Padova University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference60 articles.

1. Energy-aware job scheduler for high-performance computing;Mämmelä;Comput. Sci.-Res. Dev.,2012

2. Technological forecasting of supercomputer development: the march to exascale computing;Lim;Omega,2015

3. Towards EXtreme scale technologies and accelerators for euROhpc hw/Sw supercomputing applications for exascale: the textarossa approach;Agosta;Microprocess. Microsyst.,2022

4. Exascale deep learning for climate analytics;Kurth,2018

5. Exascale deep learning for scientific inverse problems;Laanait,2019

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3