A state-averaged orbital-optimized hybrid quantum–classical algorithm for a democratic description of ground and excited states

Author:

Yalouz SaadORCID,Senjean Bruno,Günther Jakob,Buda Francesco,O’Brien Thomas E,Visscher Lucas

Abstract

Abstract In the noisy intermediate-scale quantum (NISQ) era, solving the electronic structure problem from chemistry is considered as the ‘killer application’ for near-term quantum devices. In spite of the success of variational hybrid quantum/classical algorithms in providing accurate energy profiles for small molecules, careful considerations are still required for the description of complicated features of potential energy surfaces. Because the current quantum resources are very limited, it is common to focus on a restricted part of the Hilbert space (determined by the set of active orbitals). While physically motivated, this approximation can severely impact the description of these complicated features. A perfect example is that of conical intersections (i.e. a singular point of degeneracy between electronic states), which are of primary importance to understand many prominent reactions. Designing active spaces so that the improved accuracy from a quantum computer is not rendered useless is key to finding useful applications of these promising devices within the field of chemistry. To answer this issue, we introduce a NISQ-friendly method called ‘state-averaged orbital-optimized variational quantum eigensolver’ which combines two algorithms: (1) a state-averaged orbital-optimizer, and (2) a state-averaged VQE. To demonstrate the success of the method, we classically simulate it on a minimal Schiff base model (namely the formaldimine molecule CH2NH) relevant also for the photoisomerization in rhodopsin—a crucial step in the process of vision mediated by the presence of a conical intersection. We show that merging both algorithms fulfil the necessary condition to describe the molecule’s conical intersection, i.e. the ability to treat degenerate (or quasi-degenerate) states on the same footing.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3