Ab initio extended Hubbard model of short polyenes for efficient quantum computing

Author:

Yoshida Yuichiro1ORCID,Takemori Nayuta12ORCID,Mizukami Wataru13ORCID

Affiliation:

1. Center for Quantum Information and Quantum Biology, Osaka University 1 , 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

2. Center for Emergent Matter Science, RIKEN 2 , Wako, Saitama 351-0198, Japan

3. Graduate School of Engineering Science, Osaka University 3 , 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract

We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method, which was originally formulated for periodic materials, toward efficient quantum computing of molecular electronic structure calculations. By utilizing this method, the first-principles Hamiltonian of chemical systems can be coarse-grained by eliminating the electronic degrees of freedom in higher energy space and reducing the number of terms of electron repulsion integral from O(N4) to O(N2). Our approach is validated numerically on the vertical excitation energies and excitation characters of ethylene, butadiene, and hexatriene. The dynamical electron correlation is incorporated within the framework of the constrained random phase approximation in advance of quantum computations, and the constructed models capture the trend of experimental and high-level quantum chemical calculation results. As expected, the L1-norm of the fermion-to-qubit mapped model Hamiltonians is significantly lower than that of conventional ab initio Hamiltonians, suggesting improved scalability of quantum computing. Those numerical outcomes and the results of the simulation of excited-state sampling demonstrate that the ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Co-creation place formation support program

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Publisher

AIP Publishing

Reference120 articles.

1. Emerging quantum computing algorithms for quantum chemistry

2. A. M. Dalzell , S.McArdle, M.Berta, P.Bienias, C.-F.Chen, A.Gilyén, C. T.Hann, M. J.Kastoryano, E. T.Khabiboulline, A.Kubica, G.Salton, S.Wang, and F. G. S. L.Brandão, arXiv:2310.03011 [quant-ph] (2023).

3. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors

4. Simulated Quantum Computation of Molecular Energies

5. Elucidating reaction mechanisms on quantum computers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3