Abstract
Abstract
This paper proposes a machine learning method to characterize photonic states via a simple optical circuit and data processing of photon number distributions, such as photonic patterns. The input states consist of two coherent states used as references and a two-mode unknown state to be studied. We successfully trained supervised learning algorithms that can predict the degree of entanglement in the two-mode state as well as perform the full tomography of one photonic mode, obtaining satisfactory values in the considered regression metrics.
Funder
Spanish Government
Eusko Jaurlaritza
QMiCS
OpenSuperQ
National Natural Science Foundation of China
Shanghai Municipal People’s Government
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献