Abstract
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver (AL) support systems, such as ALs and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next-generation BALs for large-scale clinical applications.
Funder
Higher Education Discipline Innovation Project
Chaoyang Talent Training Project of the First People’s Hospital of Kashi
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献