Revitalizing liver function in mice with liver failure through transplantation of 3D-bioprinted liver with expanded primary hepatocytes

Author:

Deng Bo1ORCID,Ma Yue1ORCID,Huang Jialyu2ORCID,He Runbang1,Luo Miaomiao1,Mao Lina1,Zhang Enhua1,Zhao Yuanyuan1,Wang Xiaoli1ORCID,Wang Qiangsong1ORCID,Pang Mingchang3,Mao Yilei3,Yang Huayu3ORCID,Liu Lanxia1ORCID,Huang Pengyu1ORCID

Affiliation:

1. State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.

2. Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China.

3. Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

The utilization of three-dimensional (3D) bioprinting technology to create a transplantable bioartificial liver emerges as a promising remedy for the scarcity of liver donors. This study outlines our strategy for constructing a 3D-bioprinted liver, using in vitro–expanded primary hepatocytes recognized for their safety and enhanced functional robustness as hepatic cell sources for bioartificial liver construction. In addition, we have developed bioink biomaterials with mechanical and rheological properties, as well as printing capabilities, tailored for 3D bioprinting. Upon heterotopic transplantation into the mesentery of tyrosinemia or 90% hepatectomy mice, our 3D-bioprinted liver effectively restored lost liver functions, consequently extending the life span of mice afflicted with liver injuries. Notably, the inclusion of an artificial blood vessel in our 3D-bioprinted liver allowed for biomolecule exchange with host blood vessels, demonstrating, in principle, the rapid integration of the bioartificial liver into the host vascular system. This model underscores the therapeutic potential of transplantation for the treatment of liver failure diseases.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3