A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes

Author:

Molina-Martínez BeatrizORCID,Jentsch Laura-VictoriaORCID,Ersoy FulyaORCID,van der Moolen Matthijs,Donato Stella,Ness Torbjørn VORCID,Heutink PeterORCID,Jones Peter DORCID,Cesare PaoloORCID

Abstract

Abstract Three-dimensional cell technologies as pre-clinical models are emerging tools for mimicking the structural and functional complexity of the nervous system. The accurate exploration of phenotypes in engineered 3D neuronal cultures, however, demands morphological, molecular and especially functional measurements. Particularly crucial is measurement of electrical activity of individual neurons with millisecond resolution. Current techniques rely on customized electrophysiological recording set-ups, characterized by limited throughput and poor integration with other readout modalities. Here we describe a novel approach, using multiwell glass microfluidic microelectrode arrays, allowing non-invasive electrical recording from engineered 3D neuronal cultures. We demonstrate parallelized studies with reference compounds, calcium imaging and optogenetic stimulation. Additionally, we show how microplate compatibility allows automated handling and high-content analysis of human induced pluripotent stem cell–derived neurons. This microphysiological platform opens up new avenues for high-throughput studies on the functional, morphological and molecular details of neurological diseases and their potential treatment by therapeutic compounds.

Funder

European Union Horizon 2020 Framework Programme for Research and Innovation

Ministry of National Education of Turkey

State Ministry of Baden-Württemberg for Economic Affairs, Labour and Housing Construction

Network of Centres of Excellence in Neurodegeneration

Baden-Württemberg Stiftung GmbH

German Ministry of Education and Research

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3