Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line

Author:

Hassani ImanORCID,Anbiah BenjaminORCID,Kuhlers PeytonORCID,Habbit Nicole LORCID,Ahmed BulbulORCID,Heslin Martin JORCID,Mobley James AORCID,Greene Michael WORCID,Lipke Elizabeth AORCID

Abstract

Abstract The development of physiologically relevant in vitro colorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of this in vivo model is costly and low-throughput. Here we report the establishment and in-depth characterization of an in vitro tissue-engineered CRC model using PDX cells. To form the 3D engineered CRC-PDX (3D-eCRC-PDX) tissues, CRC PDX tumors were expanded in vivo, dissociated, and the isolated cells encapsulated within PEG-fibrinogen hydrogels. Following PEG-fibrinogen encapsulation, cells remain viable and proliferate within 3D-eCRC-PDX tissues. Tumor cell subpopulations, including human cancer and mouse stromal cells, are maintained in long-term culture (29 days); cellular subpopulations increase ratiometrically over time. The 3D-eCRC-PDX tissues mimic the mechanical stiffness of originating tumors. Extracellular matrix protein production by cells in the 3D-eCRC-PDX tissues resulted in approximately 57% of proteins observed in the CRC-PDX tumors also being present in the 3D-eCRC-PDX tissues on day 22. Furthermore, we show congruence in enriched gene ontology molecular functions and Hallmark gene sets in 3D-eCRC-PDX tissues and CRC-PDX tumors compared to normal colon tissue, while prognostic Kaplan–Meier plots for overall and relapse free survival did not reveal significant differences between CRC-PDX tumors and 3D-eCRC-PDX tissues. Our results demonstrate high batch-to-batch consistency and strong correlation between our in vitro tissue-engineered PDX-CRC model and the originating in vivo PDX tumors, providing a foundation for future studies of disease progression and tumorigenic mechanisms.

Funder

UAB Institutional Core Funding Mechanism

National Cancer Institute

National Center for Advancing Translational Sciences

Auburn University Research Initiative in Cancer

National Institute of Food and Agriculture

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Reference111 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3