Ratiometric Inclusion of Fibroblasts Promotes Both Castration‐Resistant and Androgen‐Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues

Author:

Habbit Nicole L.1ORCID,Anbiah Benjamin1,Suresh Joshita1,Anderson Luke1,Davies Megan L.1,Hassani Iman1,Ghosh Taraswi M.2,Greene Michael W.3,Prabhakarpandian Balabhaskar4,Arnold Robert D.2ORCID,Lipke Elizabeth A.1ORCID

Affiliation:

1. Department of Chemical Engineering Samuel Ginn College of Engineering Auburn University 212 Ross Hall Auburn AL 36849 USA

2. Department of Drug Discovery and Development Harrison College of Pharmacy Auburn University 720 So. Donahue Dr., Pharmaceutical Research Building Auburn AL 36849 USA

3. Department of Nutritional Sciences College of Human Sciences Auburn University 210 Spidle Hall Auburn AL 36849 USA

4. Biomedical Technology Division CFD Research Corporation 701 McMillian Way NW Huntsville AL 35806 USA

Abstract

AbstractTo investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix‐inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine‐variant castration‐resistant (CPRC‐ne) or androgen‐dependent (ADPC) PCa cells with tumor‐supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC‐ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC‐ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC‐ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast‐driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa‐mimetic tool in future therapeutic development efforts.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3