Size- and density-dependent acoustic differential bioassembly of spatially-defined heterocellular architecture

Author:

Gu LongjunORCID,Jiang ShanqingORCID,Xu Xiaodong,Wang Jibo,Xu Fang,Fan Han,Shang Jia,Liu KanORCID,Demirci UtkanORCID,Chen PuORCID

Abstract

Abstract Emerging acoustic bioassembly represents an attractive strategy to build cellular closely-packed organotypic constructs in a tunable manner for biofabrication. However, simultaneously assemble heterogeneous cell types into heterocellular functional units with spatially-defined cell arrangements, such as complementary and sandwich cytoarchitectures, remains a long-lasting challenge. To overcome this challenge, herein we present an acoustic differential bioassembly technique to assemble different cell types at the distinct positions of the acoustic field based on their inherent physical characteristics including cellular size and buoyant density. Specifically, different cell types can be differentially assembled beneath the nodal or the antinode regions of the Faraday wave to form complementary cytoarchitectures, or be selectively positioned at the center or edge area beneath either the nodal or the antinode regions to form sandwich cytoarchitectures. Using this technique, we assemble human induced pluripotent stem cell-derived liver spheroids and endothelial cells into hexagonal cytoarchitectures in vitro to mimic the cord and sinusoid structures in the hepatic lobules. This hepatic lobule model reconstitutes liver metabolic and synthetic functions, such as albumin secretion and urea production. Overall, the acoustic differential bioassembly technique facilitates the construction of human relevant in vitro organotypic models with spatially-defined heterocellular architectures, and can potentially find wide applications in tissue engineering and regenerative medicine.

Funder

National Key Research and Development Program of China

Medical Science Advancement Program (Clinical Medicine) of Wuhan University

Applied Foundational Research Program of Wuhan Municipal Science and Technology Bureau

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3