Fabrication of chitin‐fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering

Author:

Yang Pengcheng1,Xie Fang23,Zhu Lihang1,Selvaraj Jonathan Nimal1,Zhang Donghui1ORCID,Cai Jie23

Affiliation:

1. State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High‐throughput Drug Screening Technology, School of Life Science Hubei University Wuhan China

2. Hubei Engineering Center of Natural Polymers‐based Medical Materials, College of Chemistry and Molecular Sciences Wuhan University Wuhan China

3. Institute of Hepatobiliary Diseases Zhongnan Hospital of Wuhan University Wuhan China

Abstract

AbstractAs the cornerstone of tissue engineering and regeneration medicine research, developing a cost‐effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β‐chitin derivative (QC) and fibrin‐matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell‐derived cardiomyocytes (hPSC‐CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human‐engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220–1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring‐shaped and patch‐shaped hEHT. These QCFM1 hydrogels‐based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin‐derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3