From local to global matrix organization by fibroblasts: a 4D laser-assisted bioprinting approach

Author:

Douillet CamilleORCID,Nicodeme Marc,Hermant Loïc,Bergeron Vanessa,Guillemot Fabien,Fricain Jean-Christophe,Oliveira HugoORCID,Garcia MikaelORCID

Abstract

Abstract Fibroblasts and myofibroblasts play a central role in skin homeostasis through dermal organization and maintenance. Nonetheless, the dynamic interactions between (myo)fibroblasts and the extracellular matrix (ECM) remain poorly exploited in skin repair strategies. Indeed, there is still an unmet need for soft tissue models allowing to study the spatial-temporal remodeling properties of (myo)fibroblasts. In vivo, wound healing studies in animals are limited by species specificity. In vitro, most models rely on collagen gels reorganized by randomly distributed fibroblasts. But biofabrication technologies have significantly evolved over the past ten years. High-resolution bioprinting now allows to investigate various cellular micropatterns and the emergent tissue organizations over time. In order to harness the full dynamic properties of cells and active biomaterials, it is essential to consider ‘time’ as the 4th dimension in soft tissue design. Following this 4D bioprinting approach, we aimed to develop a novel model that could replicate fibroblast dynamic remodeling in vitro. For this purpose, (myo)fibroblasts were patterned on collagen gels with laser-assisted bioprinting (LAB) to study the generated matrix deformations and reorganizations. First, distinct populations, mainly composed of fibroblasts or myofibroblasts, were established in vitro to account for the variety of fibroblastic remodeling properties. Then, LAB was used to organize both populations on collagen gels in even isotropic patterns with high resolution, high density and high viability. With maturation, bioprinted patterns of fibroblasts and myofibroblasts reorganized into dispersed or aggregated cells, respectively. Stress-release contraction assays revealed that these phenotype-specific pattern maturations were associated with distinct lattice tension states. The two populations were then patterned in anisotropic rows in order to direct the cell-generated deformations and to orient global matrix remodeling. Only maturation of anisotropic fibroblast patterns, but not myofibroblasts, resulted in collagen anisotropic reorganizations both at tissue-scale, with lattice contraction, and at microscale, with embedded microbead displacements. Following a 4D bioprinting approach, LAB patterning enabled to elicit and orient the dynamic matrix remodeling mechanisms of distinct fibroblastic populations and organizations on collagen. For future studies, this method provides a new versatile tool to investigate in vitro dermal organizations and properties, processes of remodeling in healing, and new treatment opportunities.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3