Affiliation:
1. Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
Abstract
Abstract:
Cartilage tissue presents challenges in terms of repair and regeneration due to its inherent limitations in self-healing and the scarcity of available donors. Cartilage damage can result in the development of joint problems characterized by symptoms, such as pain, swelling, and osteoarthritis. Collagen scaffolds are extensively used as biomimetic substances for cartilage engineering due to their ability to offer structural, biochemical, and mechanical signals for chondrocytes. Nevertheless, traditional techniques for producing collagen scaffolds frequently yield inadequate pore architecture, diminished mechanical robustness, and restricted form accuracy. Hence, 3D printing is a developing method that can surpass these restrictions by allowing accurate manipulation of the shape, porousness, and makeup of the scaffold. 3D printing has the capability to include various materials and cells in the scaffolds, resulting in the production of intricate and personalized tissue structures. This research examines the latest progress in utilizing 3D printing to create collagen scaffolds for the purpose of regenerating cartilage. This text discusses the different sources of collagen, methods of cross-linking, techniques for printing, and strategies for post-processing that are employed to improve the performance of scaffolds. Furthermore, it discusses the difficulties and potential future paths of utilizing 3D printing to create collagen scaffolds for the purpose of regenerating cartilage.
Publisher
Bentham Science Publishers Ltd.