Likelihood-based Jump Detection and Cosmic Ray Rejection for Detectors Read Out Up-the-ramp

Author:

Brandt Timothy D.ORCID

Abstract

Abstract This paper implements likelihood-based jump detection for detectors read out up-the-ramp, using the entire set of reads to compute likelihoods. The approach compares the χ 2 value of a fit with and without a jump for every possible jump location. I show that this approach can be substantially more sensitive than one that only uses the difference between sequential groups of reads, especially for long ramps and for jumps that occur in the middle of a group of reads. It can also be implemented for a computational cost that is linear in the number of resultants. I provide and describe a pure Python implementation that can process a 10-resultant ramp on a 4096 × 4096 detector in ≈20 s, including iterative cosmic ray detection and removal, on a single core of a 2020 Macbook Air. This Python implementation, together with tests and a tutorial notebook, are available at https://github.com/t-brandt/fitramp. I also provide tests and demonstrations of the full ramp fitting and cosmic ray rejection approach on data from the JWST.

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmic Ray Jump Detection for the Roman Wide Field Instrument;Publications of the Astronomical Society of the Pacific;2024-05-01

2. Optimal Fitting and Debiasing for Detectors Read Out Up-the-Ramp;Publications of the Astronomical Society of the Pacific;2024-04-01

3. Likelihood-based Jump Detection and Cosmic Ray Rejection for Detectors Read Out Up-the-ramp;Publications of the Astronomical Society of the Pacific;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3