Automatic Detection and Classification of Radio Galaxy Images by Deep Learning

Author:

Zhang ZhenORCID,Jiang Bin,Zhang Yanxia

Abstract

Abstract Surveys conducted by radio astronomy observatories, such as SKA, MeerKAT, Very Large Array, and ASKAP, have generated massive astronomical images containing radio galaxies (RGs). This generation of massive RG images has imposed strict requirements on the detection and classification of RGs and makes manual classification and detection increasingly difficult, even impossible. Rapid classification and detection of images of different types of RGs help astronomers make full use of the observed astronomical image data for further processing and analysis. The classification of FRI and FRII is relatively easy, and there are more studies and literature on them at present, but FR0 and FRI are similar, so it is difficult to distinguish them. It poses a greater challenge to image processing. At present, deep learning has made breakthrough progress in the field of image analysis and processing and has preliminary applications in astronomical data processing. Compared with classification algorithms that can only classify galaxies, object detection algorithms that can locate and classify RGs simultaneously are preferred. In target detection algorithms, YOLOv5 has outstanding advantages in the classification and positioning of small targets. Therefore, we propose a deep-learning method based on an improved YOLOv5 object detection model that makes full use of multisource data, combining FIRST radio with SDSS optical image data, and realizes the automatic detection of FR0, FRI, and FRII RGs. The innovation of our work is that on the basis of the original YOLOv5 object detection model, we introduce the SE Net attention mechanism, increase the number of preset anchors, adjust the network structure of the feature pyramid, and modify the network structure, thereby allowing our model to demonstrate galaxy classification and position detection effects. Our improved model produces satisfactory results, as evidenced by experiments. Overall, the mean average precision (mAP@0.5) of our improved model on the test set reaches 89.4%, which can determine the position (R.A. and decl.) and automatically detect and classify FR0s, FRIs, and FRIIs. Our work contributes to astronomy because it allows astronomers to locate FR0, FRI, and FRII galaxies in a relatively short time and can be further combined with other astronomically generated data to study the properties of these galaxies. The target detection model can also help astronomers find FR0s, FRIs, and FRIIs in future surveys and build a large-scale star RG catalog. Moreover, our work is also useful for the detection of other types of galaxies.

Funder

National Natural Science Foundation of China

the Shandong Provincial Natural Science Foundation

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RadioGalaxyNET: Dataset and novel computer vision algorithms for the detection of extended radio galaxies and infrared hosts;Publications of the Astronomical Society of Australia;2023-12-11

2. Advances on the morphological classification of radio galaxies: A review;New Astronomy Reviews;2023-12

3. Improving insulator fault detection with effective-YOLOv7 network;Journal of Electronic Imaging;2023-11-30

4. Unmasking Ovary Tumors: Real-Time Detection with YOLOv5;2023 4th International Conference on Big Data Analytics and Practices (IBDAP);2023-08-25

5. Radio sources segmentation and classification with deep learning;Astronomy and Computing;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3