LAMOST Fiber Positioning Unit Detection Based on Deep Learning

Author:

Zhou MingORCID,Lv Guanru,Li Jian,Zhou ZengxiangORCID,Liu Zhigang,Wang Jianping,Bai Zhongrui,Zhang Yong,Tian Yuan,Wang Mengxin,Wang Shuqing,Hu Hongzhuan,Zhai Chao,Chu Jiaru,Dong Yiqiao,Yuan Hailong,Zhao Yongheng,Chu Yaoquan,Zhang Haotong

Abstract

Abstract The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2.°5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.

Funder

national nature science fundation of china

Maintenance and renovation project of Major Science and Technology foundational facility of the Chinese Academy of Sciences

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3