The DESI Fiber View Camera System

Author:

Baltay C.,Rabinowitz D.,Besuner R.,Casetti D.,Emmet W.,Fagrelius P.ORCID,Girard T.,Heetderks H.,Lampton M.,Lathem A.,Levi M.,Padmanabhan N.,Silber J.

Abstract

Abstract The Dark Energy Spectroscopic Instrument (DESI) is a 5000 fiber multi-object spectrometer now being installed at the prime focus of the 4 m Mayall telescope at Kitt Peak. Using DESI to measure ∼35 million galaxy redshifts and using the Baryon Acoustic Oscillation (BAO) technique to measure distances, the results will probe the nature of the recently discovered mysterious component of our universe called dark energy. Computer controlled robotic positioners move the 120 μm diameter fibers to positions of galaxies whose location on the sky have been obtained in a previous target selection imaging survey. To achieve good throughput the fibers should be centered on the target position to within 3 μm. The robotic positioners however are only capable of a 50 μm precision on their first move. To achieve the desired precision, the Fiber View Camera (FVC) system has been implemented. The FVC, located near the hole in the primary mirror of the Mayall telescope, has been designed to take an exposure of the focal plane, located at the prime focus some 12 m above the FVC, after the robotic positioners have completed their first move. The FVC is intended to measure the fiber locations with a precision of 3 μm and issue a set of fiber coordinate corrections for the second move correcting the fiber positions by the robotic positioners. Tests show that after two iterations better than 99% of the fibers will be in their intended location to within the desired precision. This paper describes the design of the FVC system, the R&D program preceding the final design, and the tests that have been carried out to demonstrate that the FVC can achieve the required precision.

Funder

Charles Baltay DOE research grant

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3