Adaptive mesh refinement in binary black holes simulations

Author:

Rashti AlirezaORCID,Bhattacharyya MaitrayaORCID,Radice DavidORCID,Daszuta BorisORCID,Cook WilliamORCID,Bernuzzi SebastianoORCID

Abstract

Abstract We discuss refinement criteria for the Berger–Rigoutsos (block-based) refinement algorithm in our numerical relativity code GR-Athena++ in the context of binary black hole (BBH) merger simulations. We compare three different strategies: the ‘box-in-box’ approach, the ‘sphere-in-sphere’ approach and a local criterion for refinement based on the estimation of truncation error of the finite difference scheme. We extract and compare gravitational waveforms using the three different mesh refinement methods and compare their accuracy against a calibration waveform and demonstrate that the sphere-in-sphere approach provides the best strategy overall when considering computational cost and the waveform accuracy. Ultimately, we demonstrate the capability of each mesh refinement method in accurately simulating gravitational waves from BBH systems—a crucial aspect for their application in next-generation detectors. We quantify the mismatch achievable with the different strategies by extrapolating the gravitational wave mismatch to higher resolution.

Funder

National Aeronautics and Space Administration

Nuclear Physics

Publisher

IOP Publishing

Reference73 articles.

1. Catalog of 174 binary black hole simulations for gravitational wave astronomy;Mroue;Phys. Rev. Lett.,2013

2. The SXS Collaboration catalog of binary black hole simulations;Boyle;Class. Quantum Grav.,2019

3. Georgia tech catalog of gravitational waveforms;Jani;Class. Quantum Grav.,2016

4. The RIT binary black hole simulations catalog;Healy;Class. Quantum Grav.,2017

5. A catalogue of precessing black-hole-binary numerical-relativity simulations;Hamilton,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3