Probabilistic model for the gravitational wave signal from merging black holes

Author:

Khan Sebastian1ORCID

Affiliation:

1. School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom

Abstract

Parametrized models that predict the gravitational-wave (GW) signal from merging black holes are used to extract source properties from GW observations. The majority of research in this area has focused on developing methods capable of producing highly accurate, point estimate, predictions for the GW signal. A key element missing from every model used in the analysis of GW data is an estimate for how confident the model is in its prediction. This omission increases the risk of biased parameter estimation of source properties. Current strategies include running analyses with multiple models to measure systematic bias however, this fails to accurately reflect the true uncertainty in the models. In this work we develop a probabilistic extension to the phenomenological modeling workflow for nonspinning black holes and demonstrate that the model not only produces accurate point estimates for the GW signal but can be used to provide well-calibrated local estimates for its uncertainty. Our analysis highlights that there is a lack of numerical relativity (NR) simulations available at multiple resolutions which can be used to estimate their numerical error and implore the NR community to continue to improve their estimates for the error in NR solutions published. Waveform models that are not only accurate in their point-estimate predictions but also in their error estimates are a potential way to mitigate bias in GW parameter estimation of compact binaries due to unconfident waveform model extrapolations. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3